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Abstract. Theh-deformed quantum plane is a counterpart of ghgeformed one in the set of
quantum planes which are covariant under those quantum deformati@ns (@ which admit

a central determinant. We have investigated the non-commutative geometry jotigfermed
quantum plane. There is a two-parameter family of torsion-free linear connections, a one-
parameter sub-family of which are compatible with a skew-symmetric non-degenerate bilinear
map. The skew-symmetric map resembles a symplectic 2-form and induces a metric. It is
also shown that the extendéddeformed quantum plane is a non-commutative version of the
Poincaé half-plane, a surface of constant negative Gaussian curvature.

1. Introduction

Quantum planes are simple examples of quantum spaces and have been studied intensively
by many authors in the past years. They arise as deformations of planes on which quantum
groups act covariantly. For references to the literature we refer to the recent monographs
by Chari and Pressley [5] and by Majid [21]. One of the quantum planes, referred to as the
g-deformed quantum plane or the Manin plane [22], is defined as the associative algebra
generated by two non-commuting elements (‘coordinatesihd y such that

Xy = qyx.

The quantum groupGL,(2) is the symmetry group of thg-quantum plane. Another
guantum plane, called the-deformed quantum plane [7, 23], is defined as the associative
algebra generated by two non-commuting elemenésd y such that

Xy —yx = hyz.

The quantum groupGL;,(2) is the symmetry group of thé-quantum plane. These
two quantum planes are the only deformations of the ordinary plane which are covariant
under the quantum deformations 6fL(2) which admit a central determinant since up to
isomorphismG L, (2) andG L, (2) are the only two such deformed quantum groups [16]. The
h-deformation can be seen as a singular contractiongetiaformation [2]. More precisely,

a class of similarity transformations of tiRematrices associated tpdeformations can be
introduced such that theg — 1 limit gives explicit R-matrices for thez-deformations [1].
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Although the transformation matrix is itself singular in the limit, the construction is well-
defined.

As usual in non-commutative geometry [6, 18] quantum planes have over them many
differential calculiQ*(A). The commutation relations i®1(4) must be consistent with
the commutation relations of the algebra but this condition is not enough to uniquely define
the calculus. There is, however, a particularly interesting calculus known as the Wess—
Zumino calculus [26, 27] which is covariant under the co-action oftlieeformed quantum
groups. There is similarly a calculus over theleformed quantum plane which is covariant
under the co-action of the-deformed quantum groups [4]. Moreover, general definitions
have been proposed recently of a linear connection and a metric within the context of non-
commutative geometry in general and for quantum spaces in particular. Using these tools,
we shall investigate here the Riemannian geometry ofstldeformed quantum plane. It
turns out that thé:-deformed quantum plane has more interesting geometrical properties
than theg-deformed one.

In section 2 we give a review of the definition of what we call the ‘Stehbein’ formalism
[8,20] and of a definition of a linear connection [9, 10, 18, 25] which has been used in
non-commutative geometry. In section 3, a two-parameter family of torsion-free linear
connections is constructed on thedeformed quantum plane. The existence of a two-
parameter family of torsion-free linear connections is shown to be quite general even within
the set of two-parametgr-deformed quantum planes with an appropriate supplementary
condition between deforming parameters. Moreover, there is a skew-symmetric non-
degenerate bilinear map with which a one-parameter sub-family of linear connections are
compatible. We shall also show that the skew-symmetric map resembles the symplectic
2-form of an ordinary manifold and induces a metric and the skew derivatives [27] of the
h-deformed quantum plane. We shall compare the results df-theformed quantum plane
with those of theg-deformed one. In section 4, we shall investigate the geometry of the
extendedir-deformed quantum plane. It turns out that the extende®formed quantum
plane has a unigue metric-compatible torsion-free linear connection; it is a non-commutative
version of the Poincérhalf-plane, a surface of constant negative Gaussian curvature. This
can be shown explicitly by a change of generators.

2. Metric-compatible linear connections

2.1. Linear connections

Let A be an associative algebra with the identity 1. (®f, d,) be the universal differential
calculus ovetd. Then every other differential calculus ovdrcan be obtained as a quotient
of it. We suppose that there exists a bimodule of 1-fogtsand a mapd of A into Q.
Then we can find amd-bimodule homomaorphism; : Q}t — Q' such thaw, od, = d. For
integersn > 2, Q" is defined to be the quotient space

Q= 2.1.1)

<du(Ker¢n—l)>

whereg,_1 is the projection map fron@"~* to "~ and(d, (Ker¢,_1)) is the.A-bimodule
generated byd,(Ker¢,_1). This construction can be summarized in the following
commutative diagram

A Dot Ay g2 Ay
Il o1 92 (2.1.2)
A 4L et 4 2 4
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We shall be mainly interested here in the bimodulEsand Q2. Since

QP =qle, Q! (2.1.3)
there is an exact sequence.dfbimodules

0> K=o Q'S5 Q%250 (2.1.4)
where

K = (¢1® 1) ((duKerga)) = (¢1 @ ¢p1)(duKergy). (2.1.5)

The definition of linear connection we use [9, 10, 18, 25] makes full use of the bimodule
structure ofQ!. It is defined to be a map

D:Q'— Qle 0t (2.1.6)
satisfying the two Leibniz rules

D(f§) =df @&+ fD§ (2.1.7)

DESf) =0 ®df) + (D§) f (2.1.8)

where f € A, € € Q' ando is a map fromQ! ®, Q! to Q! ®, Q@ which generalizes
the permutation. For the consistency of the definition of a linear connectionust be
assumed to bel-bilinear. That is, we must have, fgf € A and, n € Qt,

o(fE®n) = fo(®n) oE@nf)=0GE @] (2.1.9)

The map® : Q! — Q? defined by® = d — 7 o D is the torsion of the linear connection
D. It is A-bilinear only if o is assumed to satisfy the condition [9]

mo(o+1)=0. (2.1.10)
A linear connectionD can be extended to a linear map
D:Q'e, 0 — Qe Qe 0 (2.1.11)
satisfying
D(E ®n) = D5 @ n+ 01206 ® Dn) (2.1.12)

for £, n € Q!, whereo, =0 @ 1.
A A-bilinear map

Qo ti A (2.1.13)

is called non-degenerate wheneywgt ® ) = 0 for all n € Q! implies thaté = 0 and
g€ ®n) =0 for all £ € Q' implies thaty = 0. A metric is a non-degeneraté-bilinear
map. A metric is called symmetric (skew-symmetrickibo = g (goo = —g).

A linear connectionD is said to be compatible with a metricif the condition

1l®g)oD=dog (2.1.14)
is satisfied.
The curvature is defined to be the map
m12D%: Q- Q2 @4 0t (2.1.15)

wherer;, = 7 ® 1. This map is left4-linear if the torsion is free, but it is not, in general,
right A-linear [10]. There is at the moment no general consensus of the correct definition
of the curvature respecting the bimodule structure of the linear connection, but since we are
primarily interested in the first-order effects in the commutative limit, we can identify the
curvature with the operator;,D?.
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We define the Ricci map
ot B8 ot (2.1.16)
by Ric= —(1® g) D>

2.2. The Stehbein formalism

To initiate the construction in the previous subsection, we suppose that the algebra
non-commutative and define the bimodule of 1-forms using a set of inner derivations [8].
For each positive integer let A; be a set ofn linearly independent elements of and
define the derivations by

e = ad Ai. (221)
For any f € A, we define the 1-forrdf by
df(e)) = e f =[Ai, f]. (2.2.2)

The Q! is then defined to be thel-bimodule (d.A) generated by the image af. Any
element ofQ! is the sum of elements of the forrfidg or, equivalently using the Leibniz
rule, of the form(df)g. We define

(fdg)(ei) = feig ((dg) f)(e) = (eig) f. (2.2.3)

We suppose that there exists a setnoklementsd’ of Q?, called [8,20] a ‘frame’ or
‘Stehbein’ as the non-commutative equivalent of a ‘moving framei-txein, such that

ei(ej) = 5}%, (2.2.4)
Then it follows easily that’ commute with the elementg € A,
foi=0'f (2.2.5)

and thatQ?! is free of rankn as a left or right module. Hence, the exact sequence in
equation (2.1.4) splits. Let be the splitting map and write [20]

jom(0' ®6)) =PV uo* @46 (2.2.6)

The coefficientsP’/;; depend on the map and belong to the centr&(A) of A. Sincer
is a projection we have

PY . P™y = Py (2.2.7)
and the producs’6’/ satisfies the condition

0'07 = P ,0%0". (2.2.8)
If we defined = —2;6%, then it follows that

df = —[6, f] (2.2.9)

and thus, as ani-bimodule, the one elemeAtgeneratef?.
If the 67 exist, then it can be shown [8, 20] that must satisfy the equation

2 P — i FY — Ky =0 (2.2.10)

with Fl.’j. and K;; complex numbers. Associated to this equation there is a modified Yang—
Baxter equation [20]. The structure elemeats, are defined by the equation

do’ = —1C' ;076" (2.2.11)
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They are related to the coefficients of equation (2.2.10) by the identity

Cliyu=F i — 24P (2.2.12)
Consistent with equation (2.2.8), we shall impose the conditions
PYiyC™ =C"y PYyK;; = Ky. (2.2.13)
Using the Stehbein, we now introduce a connection and a torsion 2-form
DO = —w' ;367 @ 6 (2.2.14)
®' =dd' — 7 o DO’ (2.2.15)

as well as a metric
20 ®67) = gl (2.2.16)

The coefficientsw';; and g”/ must lie in A. Sinceg is A-bilinear and because of the
condition (2.2.5),¢” must lie in the centreZ(4). We also write

o ®67)=57,0"®46'. (2.2.17)

Then again, by thed-bilinearity of o, the coefficientss’/; also lie inZ(A). The condition
(2.2.10) becomes

(874 + 818 PH,, = 0. (2.2.18)
Using this notation, the metric-compatibility of a connectibnis expressed as

o'k 4+ oy™S", = 0. (2.2.19)
The condition that the connection be torsion-free is given by

(@'jx — 3C" ) P*,, = 0. (2.2.20)
The curvaturer;,D? can be written in terms of the frame as

m12D%0" = —3R';,6%0' ® 67 (2.2.21)
and we have

Ric(0') = 1R ;6" g(0' ® 6). (2.2.22)
It is given by

Ric(6’) = R';6/. (2.2.23)

3. The h-deformed quantum plane

3.1. Linear connections

The h-deformed quantum plane is an associative algebrgenerated by non-commuting
elements (‘coordinates) andy such that

xy — yx = hy? (3.1.1)

whereh is a deformation parameter. The quantum gr@up,(2) is the symmetry group
of the h-deformed plane as 6L, (2) for the ¢g-deformed quantum plane [7, 16]. Let

A B
T = (C D) € GLy(2).
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The commutation relations between the matrix elements of the quantum group are given by
AB — BA = hs — hA?
AC —CA =hC?
AD — DA =hCD —hCA
BC —-—CB =hCD + hAC
BD — DB =hD?—h$
CD — DC = —hC?
where the quantum determinant
§=AD—-CB—hCD=DA—-CB—hCA (3.1.2)
is central.

The R-matrix associated with this quantum group and which solves the quantum
Yang—Baxter equation

R12R23R12 = RosRi2Ro3 (3.1.3)
is given by
1 —-h h R
5 0 0 1 &
R= 0 1 0 —n (3.1.4)
0O 0 0 1

The covariant differential calculus on the quantum plane can be found [4] by the method of
Wess and Zumino [27]. The results to be used in this work can be summarized as follows.
Forx’ = (x,y) and&’ = dx’ = (&, ) we have

xOxb = R xCxd x9gb = Reb_ygcxd
g8l = — R e8! dux? = 80 + R™ ,.x¢,. (3.1.5)
The second and third equations are written explicitly as
x& = Ex — hEy + hnx + h®ny xn =nx + hny
y§ =&y — hny yn=ny (3.1.6)
and
E2=hEn  En=-nt  n°=0. (3.1.7)

Now, as in theg-deformed quantum plane [9], the action of a linear connection on the
second equation of the above relations generically results in the following relations:

£ ®E" = R 40 (E° @ &%) x“DgP = R, (DE)x?. (3.1.8)
Since R—! = R, the first equation is verified when transforms as?, i.e.

CEQRE =ERE—MERN+I®E+h* Q7

ocE®@nN)=n®E+hn®n (3.1.9)

ocn®E)=E®@N—hn®n

ocn®n) =n®n.

The definition of the map now is extended to the whole spa@é® 42! by the A-linearity.
Then it is easy to see that satisfies equation (2.1.10) and

o?=1 (3.1.10)
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Also from the quantum Yang—Baxter equation®fin equation (3.1.3)) it follows that
012023012 = 023012023 (3.1.11)

We are now in a position to exhibit the general linear connectioon Q*, as in the
g-deformed quantum plane. We introduce the 1-form

Kk =xn—yE—hyn (3.1.12)

which is covariant under the action 6f.,(2). Then we have

XK =KX YK =Ky

— Nk = —kn (3.1.13)
and

W2 — 0. (3.1.14)
x also obeys

cEQRK)=KkRE ock®&) =6«

oK) =k®n ok ®N =1k (3.1.15)

ok ®K) =k QK.

A solution D&” to the second equation in (3.1.8) can be immediately read off from the
second equation of (3.1.5)

D& =p(E" @k +Kk ®E) (3.1.16)

wherep is a real parameter. Also, the first equation in (3.1.5) suggests a solution of the
form

D&Y = ux‘w (8.1.17)
wherey is a real parameter ang is any element i2! ® 4 Q! such thatrer = 0 and
Xl = wxh. (3.1.18)

From equation (3.1.13), it is easy to see that= x ® . Then the general torsion-free
linear connectionD is given by

DEY = uxk @k + p(E° Kk +k Q EY). (3.1.19)

This two-parameter solution has been also found by Khoredmii [15]. Now it is natural to
investigate other possible in various cases. For this we extend theleformed quantum
plane to the two-parameter case [4] on which the two-parameter quantum@ioup acts.

In this case, we have the same equations as in (3.1.5) and (3.1.8Rwéthlaced by

1 —-n K hi
A 0O 0 1 =h
R = 0 1 0 —h (3.1.20)
0O 0 0 1
A straightforward calculation yieldsr as follows. Forh’ =nh (n =2,3,4,...)
o =y"k®n+1Q«) (3.1.21)
and forh’ = inh (n=2,3,4,...)
-2
o =y"% QK — n—hy”_ln ® k. (3.1.22)

2
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Then we have a two-parameter family of torsion-free linear connectiongi'foe nh
n=2234..)

DE* = px“(y*" %k @ k — (n — Dhy” " @ k) + px“y"*(k ® N + 0 ® k) (3.1.23)
and a one-parameter family of torsion-free linear connections’fer %nh n=357,...)

-2
D&Y = ux* (y”zk QK — nThy”’ln ® K) . (3.1.24)

The supplementary conditioif = nh or b’ = %nh corresponds tp = ¢" for the case [14]
of the g-deformed quantum plane with the two-parameter quantum gélp,(2) where
the linear connection is given bP£* = ux*x"1y" 1k ® «.
In the next subsection, we consider the first term of the two-parameter family of torsion-
free linear connections in equation (3.1.19)

DEY = uxc Q@ k (3.1.25)

since it is compatible with a skew-symmetric non-degenerate bilinear map. From the linear
connection we have the curvature

m12D%E = —Q4), @ &b (3.1.26)
where the 2-fornm2¢;, is given by
2
a xy —x°+hxy

The 1-formx satisfies the equatioP?« = 0.

3.2. The symplectic 2-form

In this subsection, we shall use the expression ‘symplectic 2-form’ and ‘skew-symmetric
metric’ synonymously and denote it by since a skew-symmetric metric on thedeformed
guantum plane resembles a symplectic 2-form as in the ordinary geometry. A symmetric
metric will be denoted simply as a metric as in ordinary geometry.

It has been shown that no metric can exist in the case ofgtdeformed quantum
plane [9]. However, thé&-deformed quantum plane has a better geometrical structure than
the g-deformed quantum plane and it does have a metric. In facttheformed quantum
plane has a symplectic 2-form, with which a metric can be associated. The symplectic
2-form of theh-deformed quantum plane is given in a matrix form as

a a h o1

AEQEN) = AT = (_1 0). (3.2.1)
Now it is straightforward to show that in the particular case when the covariant derivative
is given by D§¢ = ux“x ® k we have

1R A)D(E* &) =dA*® =0 (3.2.2)
and foros =1Q® o

(1® A)o12023(6 ®§ ® &) = hé

(1® A)o12023(6 ®E ® ) = hn

(1® A)o12023(6 @ ®E) =&

(1® A)o12023(E @@ 1) =17 (3.2.3)

(1® A)o12023(n ®E ®E) = —§
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(1® A)o12023(n ®@E®n) = —n
(1® A)o12023(n®@n®E) =0
(1® A)o12023(n @ n®@n) =0.

From these relations, it follows that the symplectic 2-formsatisfies the compatibility
condition in equation (2.1.14), while the symplectic 2-forn = (_Oq é) of the ¢-
deformed quantum plane does not.

We define thei-deformed symplectic group by

Spa(l) ={T € GL,(2) | TAT' = A}. (3.2.4)
Equivalently, the symplectic 2-form is preserved under the action §p;, (1), i.e.
AE"®E") = AE Q&) (3.2.5)

under the transformation

&Y_(A B\ (&

n) \C DJ\n)
From equation (3.1.5) it follows thafp,(1) = SL,(2), which is consistent with the
commutative limit whem — 0.

In ordinary symplectic geometry, metrics can be defined by a symplectic 2-form together
with a complex structure and these all together result in a Hermitian inner product. One can
do the same in the-deformed quantum plane. We can definetinear mapJ : Q' — Q!
by

JE =i§ Jn=—in (3.2.6)

where i = /—1. The mapJ/ satisfies/? = —1 and can be regarded as the complex
structure of theh-deformed quantum plane. Associated with the symplectic 2-farm
there is a metrig satisfying the following relation, fo€, n € Q1,

8JE®@nN) =AEQ®n) (3.2.7)
which can be written in matrix form as
—ih =i
g = ( S0 ) (3.2.8)
On the other hand, there is another megyidefined by
gE®N =AE®RIn) (3.2.9)
which is, in matrix form,
, (i i
g = (—i 0 ) (3.2.10)
The two metrics are related by the condition
gUE@JIn =¢E®n (3.2.11)

for any£, n € Q! and agree wheh — 0. These metrics, however, are not compatible with
the linear connectio. In fact there is no metric on thie-deformed plane with respect to
which D is compatible. Such a metric can be found, however, if we extend-tfeformed
guantum plane as in the next section. In order to compare them with the commutative-limit
case let us define

1 . 2 i .
ﬁ(é +in) 0= ﬁ(é in). (3.2.12)

9t =
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Then it is easy to see that
Jot=v2 Jo? = —pl. (3.2.13)

With respect to{#!, 92}, the two metricsg, g/, and the symplectic 2-form\ can be
expressed as follows

1; 1 1; 1 1 1;
g=<1—l§|h él’; >’ g,:<1+l§|h —Efl >7 A:( ihl 1+1§|h>
o 1+ lin ~In 1-TLin ~1%+lin —ln
(3.2.14)
If we define
H=g +iA (3.2.15)

the mapH goes over to the usual Hermitian inner product on the complex 2-gl4niea
the commutative limit. Moreover, it is interesting to see that if wenlet= (—n, & + hn)
and define the skew derivativig by

then g, satisfy the second equation of (3.1.5) given by Wess and Zumino [27]. Thus the
skew derivatives), arise as Hamiltonian vector fields in thhedeformed quantum plane.
This is not the case for thg-deformed quantum plane. In fact,if&? = R, x4, there
should be elements, € Q' such that

Nax? = R qxn, (3.2.17)

for the skew derivatives to be induced from the symplectic 2-farras above. However,
there are no such, in the case of theg-deformed quantum plane.

4. The extendedh-deformed plane

4.1. Linear connections

The extendedh-deformed quantum plane is an associative algedragenerated by
x,y,x" 1 y1 satisfying equation (3.1.1). The extendieeformed plane is also more
interesting than the extendgddeformed one from the point of view of geometry since the
metric and linear connection it supports have an interesting commutative limit.

If A is a unital x-algebra andx and y are Hermitian elements, theh < iR.
Equation (3.1.1) can be written as,[y"!] = —A4. In this form we see that the algebra
has the structure of the Heisenberg algebra with the pararhgikxying the role oz but
the differential calculus (3.1.6) is not ‘natural’ from this point of view. If we introduce

u=xy 1+ %h v=y? (4.1.1)
then the commutation relation becomes
[u, v] = —2hv. (4.1.2)

This choice of generators is useful in studying the commutative limitx Hnd y are
Hermitian, then so are andwv.

We can write (4.1.2) also a®[(1/2)logv] = —h if we introduce the formal element
logv. We see then that

/ /
xX'=u y

- logv
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also satisfy the commutation relations (3.1.1). The algebra cannot then be uniquely
defined by the commutation relations. In fact, von Neumann proved that only by using
additional topological conditions could one deduce the uniqueness of the representation of
the Heisenberg commutation relations.

A (real) frame can be written in terms of the generators in equation (3.1.1) as

Ot =yE—(x—hyp  07=2y""p (4.1.3)
and in terms of the generators in equation (4.1.2) as

6t = v tdu 6% = —v~tdv. (4.1.4)
The original basig&, ) can be written in terms of the” as

2t = 2y~ 191 4+ x0? 2n = yh2. (4.1.5)
0* satisfy the commutation relations (2.2.5) as well as the relations

©H2 =0 ©»%?=0 0162 + 620 = 0. (4.1.6)
From equation (2.2.6) we see then tiR{t’ , is given by

P g = 55085 — 8289 (4.1.7)

and, therefore, from equation (2.2.12), we h&/g,. = F%,. In particular,C?,. are real
numbers. The differentialsfd are given by equation (2.2.11) with

Clo=-Clyn=1 C%p =0. (4.1.8)
If we introduce the derivations, = adi, with
1 1 1 1 1
)\’ — -2 [—p— )\, = — -1 _ = — 4.1.9
=Y =%t R T (4.19)

we see that equation (2.2.4) is satisfied. We can conclude from equation (2.2.1@) that
must form a (real) Lie algebra. We then have from equation (4.1.2)
[A1, A2] = Aq. (4.1.10)
The A, form a solvable Lie algebra.
The ‘Dirac operator’ [6] in equation (2.2.9) is given by
_ 1 -1 1 -2 __ 1 -1
0 = Ey & E(x hy)y “n = Z(du uv - dv). (4.1.11)
A straightforward calculation yieldsgd+ 62 = 0.
We introduce a metric and we sgf?® ® 6%) = g?. From the bilinearity condition on
g and the relations (3.1.1) we see tlgdt must be complex numbers. If we wish the metric
to be real therg®® must be real numbers. By a trivial change of basis we can suppose that
g = 8. We then have in terms of the generatorand y
gE®E =y +x4  gE®n) =xy/4
gm®E) =yx/4  gn®n) = y?/4 (4.1.12)
and in terms of the generato#sand v
g(du ® du) = v? g(du® dv) =0
g(dv® du) =0 g(dv ® dv) = v2. (4.1.13)
A flat metric-compatible linear connection is given by
DO* = 0. (4.1.14)
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It has torsion, given by
ol =62 ®?=0. (4.1.15)

For the generic solution in equation (3.1.9), the unique torsion-free, metric-compatible
linear connection is given by

Do = —9l ® 62 D6?% =9t ® 01 (4.1.16)

This D is also compatible with the symplectic 2-formgiven in equation (3.2.1)DA = 0.
The curvature map defined by equation (2.2.21) becomes

112D%01 = 016? ® 62 m12D%0% = —0'6% @ 6*. (4.1.17)
If one sets as usudt, ;. = g..R»cq then one finds that the Gaussian curvature is given by
Risip= —1. (4.1.18)

The coefficientsR,,.s satisfy the usual symmetries of the coefficients of a Riemann curvature
tensor. The coefficients of the Ricci map are given by

R, =85, (4.1.19)
We choose now: = 3. Then it is of interest to introduce a third (Hermitian) element

w=—2w®— 2hu+ 1+ 2n*v ! (4.1.20)
of the algebrad and define

Az = %w. (4.1.21)
The A; = (A4, A3) still form a Lie algebra

[A1, 22] = A1 [A2, 23] = A3 [A3, A1] = 22 (4.1.22)
A straightforward calculation yields

el =v eqv=0 ew = —u

eou =0 eV = —v eow =w (4.1.23)

e3u = —w eV = U esw = 0.

e¢; satisfy the same commutation relations
[e1, e2] = e1 [e2, e3] = e3 [es, e1] = e2 (4.1.24)

as ;. They are real in the sense that the derivatépyi of an Hermitian elemenyf is
Hermitian.

The Lie algebra in equation (4.1.24) is a real formSdf(2, C), different from the Lie
algebra ofS03;. We have found a frame with two generators since the Pdénlkalf-plane
is a parallelizable manifold and the module of 1-forms is a free (left or right) module. This
is not so in the case of the 2-sphere [18]; the module of 1-forms in this case is a non-trivial
submodule of a free module of rank three. The Lie algebra of Killing vector fields of the
Poincaé half-plane and the sphere are different real realizatior&Lg2, C).

A differential calculus can be defined using the three 1-fofidual to the derivations
e;. An analogous situation was discussed in the case ofjileformed plane [8]. From
equation (4.1.23) we conclude that

du = vo! — wed dv = —v6? + u6® (4.1.25)
to which we can add
dw = —ubt + wo?. (4.1.26)
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The second of equations (4.1.25) is a trivial consequence of the commutation relations,
obtained by equating the differential of both sides of equation (4.1.2). The previous
differential calculus with two generators is obtained formally by settiig= 0 in
equation (4.1.25). The commutation relations which define the module structuf® of
are obtained from equation (4.1.25):

udu — duwu = —2h du — 4hwo? vdu — du v = 2hu6®

udv — dvu = —2h dv + 2hu6® vdv — dvv = 2hv63, (4.1.27)
Apart from the trivial relation which follows from the commutation relations these equations
contain two cubic relations

uvdv —udvv = vduv— duv?

vudy —vduu +2hvdu +2vdvw — 2dvvw = 0. (4.1.28)

Provided thath # 0 the system equations (4.1.25) and (4.1.26) can be inverted to obtain
equations for thé’ in terms of di, dv and dw:

1 1 1
0t = Eu_l[w, du] 62 = Ev_l[u, dv] 6% = Eu_l[v, du]. (4.1.29)

This differential calculus has fewer relations than the one defined above. It lies between
that defined by relations (4.1.6) and the universal differential calculus, which has a free
algebra of forms with no relations.

If one defines the Lie derivative of an elemefitce 4 asLy f = Xf thenLx can be
extended to a derivation of the tensor algebra aRérjust as in ordinary geometry. In
particular, if&, n are 1-forms andy is the interior product then the Lie derivativecé of
& is given by

Ly& = diy€ +iy dé (4.1.30)

andLyx(£f ® n) = Lx(¢§ ® fn) is well defined.
A Killing derivation [18] is a derivationX such that the Lie derivativé y of the metric

g vanishes:Lxyg = 0. DenoteL; as the Lie derivative with respect to the derivatign
Then it is easy to see that

L6 = —p? L162=0

L0t = +61 Lo6%=0

L36t = —v~twe? L36? = —v~tue? — 6. (4.1.31)
From these formulae one can calculate the Lie derivative of the metric for the ‘covariant
form’ g = gu0° ® 6°:

Lig=—0"®6°+6°®6"

Lyg =206

Lzg = -1+ v w) @' ® 6% +02x 0% — 207 1u6? @ 62 (4.1.32)

That is, none of the derivations is a Killing derivation.

4.2. The commutative limit of the extended plane

It is interesting to study the structure of the extendedeformed quantum plane in the
commutative limit. In terms of the commutative limiis v of the generators, v of the
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algebraA and the corresponding commutative lirit of the frame, the metric is given by
the line element
ds? = (0Y% + (61?2 = v2(di® + di). (4.2.1)

This is the metric of the Poincarhalf-plane. The algebrd with the differential calculus
defined by the relations (4.1.6) can be considered then as a non-commutative deformation
of the Poincag half-plane.

The derivations; define, in the commutative limit, three vector fields

X = fILIE]oei' (4.2.2)

If we definew to be the commutative limit ofv then
X1 =109; X, = —00; X3 = —wd; + ud;. (4.2.3)

By construction these vector fields form a Lie algebra with the same commutation relations
as thee;. By equation (4.1.32) of the previous section we see thaitheannot be Killing
vector fields. There is in fact no reason for them to be so. The Pérwaf-plane has,
however, three Killing vector fieldX;, given by

X, =d; X} = iid; + 09; X}y = 3(0° — i%)0; — 10 ;. (4.2.4)
Define a mapp of the Poincag half-plane into itself by
o) =i =av?t p@) =0 =L (4.2.5)
This is a regular diffeomorphism. Indeed
p>=¢pop =1 (4.2.6)

In the spirit of non-commutative geometry we consideandv as generators of the algebra

of functions on the Poincéarhalf-plane. In ordinary differential geometry a mapof the
manifold induces a map* of the algebra of differential forms and a map of the vector

fields. Since we shall not have occasion to refer to the manifold as such, we use the notation
¢ to designate the restriction gf* to the algebra of functions. Since we have

$.0; = 0y = D0; .05 = 0y = —09; — 0°0; (4.2.7)
it is easy to see that
¢.X; = X, (4.2.8)

The commutative limit of the derivations which defined the differential calculus are then
related to the Killing vector fields in a simple way. We have not succeeded in constructing
derivations of the algebra whose commutative limits are the Killing vector figldsThe

limit ~ — O is a rather singular limit and it need not be true that an arbitrary vector field
on the Poinca half-plane is the limit of a derivation. The action ¢f on the frame is
given by

¢*0r = 31 di' = 96 + 62 $*0% = —3'"1di' = —62. (4.2.9)
The vector fieldsX; are Killing with respect to the metric
ds? = (¢*6H% + (97622 (4.2.10)

The map ¢ can also be considered as a change of coordinates. In this case
equations (4.2.1) and (4.2.10) describe the same line element in different coordinates
systems. The component' of the vector fieldsX; coincide with the components of the
Killing vector fields in the new coordinate system and the compon€fitsf the vector fields
X! coincide with the components of the Killing vector fields in the old coordinate system. We
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have not really understood the role of the mgapor why it appears. We have constructed
the algebraA using generators and relations. This is the non-commutative version of
the method of defining a curved manifold as an embedding in a higher-dimensional flat
Euclidean space. It is known [13, 24] that the Poiidaalf-plane cannot even be immersed
in R3. This fact might somehow also be connected with the existence of thepmap

The commutation relations (4.1.2) define on the Poiadelf-plane a Poisson structure

(i, 0} = —20. (4.2.11)

Since the mapp is not a symplectomorphism it cannot be ‘lifted’ to a morphism of the
algebraA. There should be a relation [19] between the Poisson structure and the Riemann
curvature. It is not evident from the present example, however, what this relation could
be. The Poincdr half-plane has been used as an example of a classical and quantum phase
space and as such has many interesting properties. For a discussion of this and reference
to the previous literature we refer the reader to Erathl [11]. The relation between the
algebra of a free quantum particle on the Poiéchalf-plane and thé-deformed algebra

we have used has yet to be investigated.

5. Conclusion

The h-deformed quantum plane seems to have more geometrical structures than the
g-deformed one. In thé&-deformed quantum plane, there is a two-parameter family of
torsion-free linear connections. The existence of a two-parameter family of torsion-free
linear connections is quite general even within the set of two-parareteformed quantum
planes. Moreover, there is a skew-symmetric non-degenerate bilinear map with which
a one-parameter sub-family of linear connections are compatible. The skew-symmetric
map plays an important role. It resembles the symplectic 2-form and makes the linear
connections symplectic. Moreover, it is interesting that the skew-symmetric map induces
skew derivatives in thé-deformed quantum plane. We can also define a complex structure
on theh-deformed quantum plane and construct a metric using this structure together with
the skew-symmetric map as in the ordinary symplectic geometry [3]. However, it should be
stressed that the metric is not compatible with the linear connections. A similar construction
is not possible in the case of tlgedeformed quantum plane.

The geometry of the Poindahalf-plane can be completely globally defined by the action
of the SL(2, R) group whose Lie algebra is given by the Killing vectors. From this point
of view a complete classification of all Poisson structures on the P@&@r{tabachevsky)
half-plane as well as their possible ‘quantum’ deformations has been given by Leitenberger
[12,17]. We have analysed in detail the extendedeformed guantum plane as a non-
commutative version of the Poin&half-plane; the roles of the derivations and the Stehbein
are explicitly investigated.
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