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Abstract. Theh-deformed quantum plane is a counterpart of theq-deformed one in the set of
quantum planes which are covariant under those quantum deformations ofGL(2) which admit
a central determinant. We have investigated the non-commutative geometry of theh-deformed
quantum plane. There is a two-parameter family of torsion-free linear connections, a one-
parameter sub-family of which are compatible with a skew-symmetric non-degenerate bilinear
map. The skew-symmetric map resembles a symplectic 2-form and induces a metric. It is
also shown that the extendedh-deformed quantum plane is a non-commutative version of the
Poincaŕe half-plane, a surface of constant negative Gaussian curvature.

1. Introduction

Quantum planes are simple examples of quantum spaces and have been studied intensively
by many authors in the past years. They arise as deformations of planes on which quantum
groups act covariantly. For references to the literature we refer to the recent monographs
by Chari and Pressley [5] and by Majid [21]. One of the quantum planes, referred to as the
q-deformed quantum plane or the Manin plane [22], is defined as the associative algebra
generated by two non-commuting elements (‘coordinates’)x andy such that

xy = qyx.
The quantum groupGLq(2) is the symmetry group of theq-quantum plane. Another
quantum plane, called theh-deformed quantum plane [7, 23], is defined as the associative
algebra generated by two non-commuting elementsx andy such that

xy − yx = hy2.

The quantum groupGLh(2) is the symmetry group of theh-quantum plane. These
two quantum planes are the only deformations of the ordinary plane which are covariant
under the quantum deformations ofGL(2) which admit a central determinant since up to
isomorphismGLq(2) andGLh(2) are the only two such deformed quantum groups [16]. The
h-deformation can be seen as a singular contraction of aq-deformation [2]. More precisely,
a class of similarity transformations of theR-matrices associated toq-deformations can be
introduced such that theq → 1 limit gives explicitR-matrices for theh-deformations [1].
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Although the transformation matrix is itself singular in the limit, the construction is well-
defined.

As usual in non-commutative geometry [6, 18] quantum planes have over them many
differential calculi�∗(A). The commutation relations in�1(A) must be consistent with
the commutation relations of the algebra but this condition is not enough to uniquely define
the calculus. There is, however, a particularly interesting calculus known as the Wess–
Zumino calculus [26, 27] which is covariant under the co-action of theq-deformed quantum
groups. There is similarly a calculus over theh-deformed quantum plane which is covariant
under the co-action of theh-deformed quantum groups [4]. Moreover, general definitions
have been proposed recently of a linear connection and a metric within the context of non-
commutative geometry in general and for quantum spaces in particular. Using these tools,
we shall investigate here the Riemannian geometry of theh-deformed quantum plane. It
turns out that theh-deformed quantum plane has more interesting geometrical properties
than theq-deformed one.

In section 2 we give a review of the definition of what we call the ‘Stehbein’ formalism
[8, 20] and of a definition of a linear connection [9, 10, 18, 25] which has been used in
non-commutative geometry. In section 3, a two-parameter family of torsion-free linear
connections is constructed on theh-deformed quantum plane. The existence of a two-
parameter family of torsion-free linear connections is shown to be quite general even within
the set of two-parameterh-deformed quantum planes with an appropriate supplementary
condition between deforming parameters. Moreover, there is a skew-symmetric non-
degenerate bilinear map with which a one-parameter sub-family of linear connections are
compatible. We shall also show that the skew-symmetric map resembles the symplectic
2-form of an ordinary manifold and induces a metric and the skew derivatives [27] of the
h-deformed quantum plane. We shall compare the results of theh-deformed quantum plane
with those of theq-deformed one. In section 4, we shall investigate the geometry of the
extendedh-deformed quantum plane. It turns out that the extendedh-deformed quantum
plane has a unique metric-compatible torsion-free linear connection; it is a non-commutative
version of the Poincaré half-plane, a surface of constant negative Gaussian curvature. This
can be shown explicitly by a change of generators.

2. Metric-compatible linear connections

2.1. Linear connections

LetA be an associative algebra with the identity 1. Let(�∗u, du) be the universal differential
calculus overA. Then every other differential calculus overA can be obtained as a quotient
of it. We suppose that there exists a bimodule of 1-forms�1 and a mapd of A into �1.
Then we can find anA-bimodule homomorphismφ1 : �1

u→ �1 such thatφ1 ◦du = d. For
integersn > 2, �n is defined to be the quotient space

�n ≡ �nu

〈du(Kerφn−1)〉 (2.1.1)

whereφn−1 is the projection map from�n−1
u to�n−1 and〈du(Kerφn−1)〉 is theA-bimodule

generated bydu(Kerφn−1). This construction can be summarized in the following
commutative diagram

A du−→ �1
u

du−→ �2
u

du−→ · · ·
‖ φ1 ↓ φ2 ↓
A d−→ �1 d−→ �2 d−→ · · · .

(2.1.2)
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We shall be mainly interested here in the bimodules�1 and�2. Since

�2
u = �1

u ⊗A �1
u (2.1.3)

there is an exact sequence ofA-bimodules

0→ K ↪→ �1⊗A �1 π→�2→ 0 (2.1.4)

where

K = (φ1⊗ φ1)(〈duKerφ1〉) = (φ1⊗ φ1)(duKerφ1). (2.1.5)

The definition of linear connection we use [9, 10, 18, 25] makes full use of the bimodule
structure of�1. It is defined to be a map

D : �1 −→ �1⊗A �1 (2.1.6)

satisfying the two Leibniz rules

D(f ξ) = df ⊗ ξ + fDξ (2.1.7)

D(ξf ) = σ(ξ ⊗ df )+ (Dξ)f (2.1.8)

wheref ∈ A, ξ ∈ �1 and σ is a map from�1 ⊗A �1 to �1 ⊗A �1 which generalizes
the permutation. For the consistency of the definition of a linear connection,σ must be
assumed to beA-bilinear. That is, we must have, forf ∈ A andξ, η ∈ �1,

σ(f ξ ⊗ η) = f σ(ξ ⊗ η) σ (ξ ⊗ ηf ) = σ(ξ ⊗ η)f. (2.1.9)

The map2 : �1→ �2 defined by2 = d−π ◦D is the torsion of the linear connection
D. It is A-bilinear only if σ is assumed to satisfy the condition [9]

π ◦ (σ + 1) = 0. (2.1.10)

A linear connectionD can be extended to a linear map

D : �1⊗A �1 −→ �1⊗A �1⊗A �1 (2.1.11)

satisfying

D(ξ ⊗ η) = Dξ ⊗ η + σ12(ξ ⊗Dη) (2.1.12)

for ξ, η ∈ �1, whereσ12 = σ ⊗ 1.
A A-bilinear map

�1⊗A �1 g→A (2.1.13)

is called non-degenerate wheneverg(ξ ⊗ η) = 0 for all η ∈ �1 implies thatξ = 0 and
g(ξ ⊗ η) = 0 for all ξ ∈ �1 implies thatη = 0. A metric is a non-degenerateA-bilinear
map. A metric is called symmetric (skew-symmetric) ifg ◦ σ = g (g ◦ σ = −g).

A linear connectionD is said to be compatible with a metricg if the condition

(1⊗ g) ◦D = d ◦ g (2.1.14)

is satisfied.
The curvature is defined to be the map

π12D
2 : �1→ �2⊗A �1 (2.1.15)

whereπ12 = π ⊗ 1. This map is leftA-linear if the torsion is free, but it is not, in general,
right A-linear [10]. There is at the moment no general consensus of the correct definition
of the curvature respecting the bimodule structure of the linear connection, but since we are
primarily interested in the first-order effects in the commutative limit, we can identify the
curvature with the operatorπ12D

2.
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We define the Ricci map

�1 Ric−→�1 (2.1.16)

by Ric= −(1⊗ g)D2.

2.2. The Stehbein formalism

To initiate the construction in the previous subsection, we suppose that the algebraA is
non-commutative and define the bimodule of 1-forms using a set of inner derivations [8].
For each positive integern let λi be a set ofn linearly independent elements ofA and
define the derivations by

ei = ad λi. (2.2.1)

For anyf ∈ A, we define the 1-formdf by

df (ei) = eif = [λi, f ]. (2.2.2)

The �1 is then defined to be theA-bimodule 〈dA〉 generated by the image ofd. Any
element of�1 is the sum of elements of the formf dg or, equivalently using the Leibniz
rule, of the form(df )g. We define

(f dg)(ei) = f eig ((dg)f )(ei) = (eig)f. (2.2.3)

We suppose that there exists a set ofn elementsθ i of �1, called [8, 20] a ‘frame’ or
‘Stehbein’ as the non-commutative equivalent of a ‘moving frame’ orn-bein, such that

θ i(ej ) = δij . (2.2.4)

Then it follows easily thatθ i commute with the elementsf ∈ A,

f θi = θ if (2.2.5)

and that�1 is free of rankn as a left or right module. Hence, the exact sequence in
equation (2.1.4) splits. Let be the splitting map and write [20]

 ◦ π(θ i ⊗ θj ) = P ij klθk ⊗ θ l. (2.2.6)

The coefficientsP ij kl depend on the map and belong to the centreZ(A) of A. Sinceπ
is a projection we have

P ijmnP
mn
kl = P ij kl (2.2.7)

and the productθ iθj satisfies the condition

θ iθj = P ij klθkθ l. (2.2.8)

If we defineθ = −λiθ i , then it follows that

df = −[θ, f ] (2.2.9)

and thus, as anA-bimodule, the one elementθ generates�1.
If the θ i exist, then it can be shown [8, 20] thatλi must satisfy the equation

2λkλlP
kl
ij − λkF kij −Kij = 0 (2.2.10)

with Fkij andKij complex numbers. Associated to this equation there is a modified Yang–
Baxter equation [20]. The structure elementsCijk are defined by the equation

dθ i = − 1
2C

i
jkθ

j θk. (2.2.11)
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They are related to the coefficients of equation (2.2.10) by the identity

Cijk = F ijk − 2λlP
(li)
jk. (2.2.12)

Consistent with equation (2.2.8), we shall impose the conditions

P ij klC
m
ij = Cmkl P ij klKij = Kkl. (2.2.13)

Using the Stehbein, we now introduce a connection and a torsion 2-form

Dθi = −ωijkθj ⊗ θk (2.2.14)

2i = dθ i − π ◦Dθi (2.2.15)

as well as a metric

g(θ i ⊗ θj ) = gij . (2.2.16)

The coefficientsωijk and gij must lie inA. Sinceg is A-bilinear and because of the
condition (2.2.5),gij must lie in the centreZ(A). We also write

σ(θ i ⊗ θj ) = Sij klθk ⊗ θ l. (2.2.17)

Then again, by theA-bilinearity of σ , the coefficientsSij kl also lie inZ(A). The condition
(2.2.10) becomes

(Sij kl + δikδjl )P klmn = 0. (2.2.18)

Using this notation, the metric-compatibility of a connectionD is expressed as

ωijk + ωklmSiljm = 0. (2.2.19)

The condition that the connection be torsion-free is given by

(ωijk − 1
2C

i
jk)P

jk
lm = 0. (2.2.20)

The curvatureπ12D
2 can be written in terms of the frame as

π12D
2θ i = − 1

2R
i
jklθ

kθ l ⊗ θj (2.2.21)

and we have

Ric(θ i) = 1
2R

i
jklθ

kg(θ l ⊗ θj ). (2.2.22)

It is given by

Ric(θ i) = Rij θj . (2.2.23)

3. The h-deformed quantum plane

3.1. Linear connections

The h-deformed quantum plane is an associative algebraA generated by non-commuting
elements (‘coordinates’)x andy such that

xy − yx = hy2 (3.1.1)

whereh is a deformation parameter. The quantum groupGLh(2) is the symmetry group
of theh-deformed plane as isGLq(2) for the q-deformed quantum plane [7, 16]. Let

T =
(
A B

C D

)
∈ GLh(2).
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The commutation relations between the matrix elements of the quantum group are given by

AB − BA = hδ − hA2

AC − CA = hC2

AD −DA = hCD − hCA
BC − CB = hCD + hAC
BD −DB = hD2− hδ
CD −DC = −hC2

where the quantum determinant

δ = AD − CB − hCD = DA− CB − hCA (3.1.2)

is central.
The R-matrix associated with this quantum group and which solves the quantum

Yang–Baxter equation

R̂12R̂23R̂12 = R̂23R̂12R̂23 (3.1.3)

is given by

R̂ =


1 −h h h2

0 0 1 h

0 1 0 −h
0 0 0 1

 . (3.1.4)

The covariant differential calculus on the quantum plane can be found [4] by the method of
Wess and Zumino [27]. The results to be used in this work can be summarized as follows.
For xi = (x, y) andξ i = dxi = (ξ, η) we have

xaxb = R̂abcdxcxd xaξb = R̂abcdξ cxd
ξaξb = −R̂abcdξ cξd ∂ax

b = δba + R̂bdacxc∂d . (3.1.5)

The second and third equations are written explicitly as

xξ = ξx − hξy + hηx + h2ηy xη = ηx + hηy
yξ = ξy − hηy yη = ηy (3.1.6)

and

ξ2 = hξη ξη = −ηξ η2 = 0. (3.1.7)

Now, as in theq-deformed quantum plane [9], the action of a linear connection on the
second equation of the above relations generically results in the following relations:

ξa ⊗ ξb = R̂abcdσ (ξ c ⊗ ξd) xaDξb = R̂abcd(Dξc)xd . (3.1.8)

SinceR̂−1 = R̂, the first equation is verified whenσ transforms asR̂, i.e.

σ(ξ ⊗ ξ) = ξ ⊗ ξ − hξ ⊗ η + hη ⊗ ξ + h2η ⊗ η
σ(ξ ⊗ η) = η ⊗ ξ + hη ⊗ η (3.1.9)

σ(η ⊗ ξ) = ξ ⊗ η − hη ⊗ η
σ(η ⊗ η) = η ⊗ η.

The definition of the mapσ now is extended to the whole space�1⊗A�1 by theA-linearity.
Then it is easy to see thatσ satisfies equation (2.1.10) and

σ 2 = 1. (3.1.10)
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Also from the quantum Yang–Baxter equation ofR̂ in equation (3.1.3)) it follows that

σ12σ23σ12 = σ23σ12σ23. (3.1.11)

We are now in a position to exhibit the general linear connectionD on �1, as in the
q-deformed quantum plane. We introduce the 1-form

κ = xη − yξ − hyη (3.1.12)

which is covariant under the action ofSLh(2). Then we have

xκ = κx yκ = κy
ξκ = −κξ ηκ = −κη (3.1.13)

and

κ2 = 0. (3.1.14)

κ also obeys

σ(ξ ⊗ κ) = κ ⊗ ξ σ (κ ⊗ ξ) = ξ ⊗ κ
σ(η ⊗ κ) = κ ⊗ η σ(κ ⊗ η) = η ⊗ κ (3.1.15)

σ(κ ⊗ κ) = κ ⊗ κ.
A solution Dξb to the second equation in (3.1.8) can be immediately read off from the
second equation of (3.1.5)

Dξa = ρ(ξa ⊗ κ + κ ⊗ ξa) (3.1.16)

whereρ is a real parameter. Also, the first equation in (3.1.5) suggests a solution of the
form

Dξa = µxa$ (3.1.17)

whereµ is a real parameter and$ is any element in�1⊗A �1 such thatπ$ = 0 and

xa$ = $xa. (3.1.18)

From equation (3.1.13), it is easy to see that$ = κ ⊗ κ. Then the general torsion-free
linear connectionD is given by

Dξa = µxaκ ⊗ κ + ρ(ξa ⊗ κ + κ ⊗ ξa). (3.1.19)

This two-parameter solution has been also found by Khorramiet al [15]. Now it is natural to
investigate other possible$ in various cases. For this we extend theh-deformed quantum
plane to the two-parameter case [4] on which the two-parameter quantum groupGLh,h′ acts.
In this case, we have the same equations as in (3.1.5) and (3.1.8) withR̂ replaced by

R̂ =


1 −h′ h′ hh′

0 0 1 h

0 1 0 −h
0 0 0 1

 . (3.1.20)

A straightforward calculation yields$ as follows. Forh′ = nh (n = 2, 3, 4, . . .)

$ = yn−2(κ ⊗ η + η ⊗ κ) (3.1.21)

and forh′ = 1
2nh (n = 2, 3, 4, . . .)

$ = yn−2κ ⊗ κ − n− 2

2
hyn−1η ⊗ κ. (3.1.22)
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Then we have a two-parameter family of torsion-free linear connections forh′ = nh

(n = 2, 3, 4, . . .)

Dξa = µxa(y2n−2κ ⊗ κ − (n− 1)hy2n−1η ⊗ κ)+ ρxayn−2(κ ⊗ η + η ⊗ κ) (3.1.23)

and a one-parameter family of torsion-free linear connections forh′ = 1
2nh (n = 3, 5, 7, . . .)

Dξa = µxa
(
yn−2κ ⊗ κ − n− 2

2
hyn−1η ⊗ κ

)
. (3.1.24)

The supplementary conditionh′ = nh or h′ = 1
2nh corresponds top = qn for the case [14]

of the q-deformed quantum plane with the two-parameter quantum groupGLq,p(2) where
the linear connection is given byDξa = µxaxn−1yn−1κ ⊗ κ.

In the next subsection, we consider the first term of the two-parameter family of torsion-
free linear connections in equation (3.1.19)

Dξa = µxaκ ⊗ κ (3.1.25)

since it is compatible with a skew-symmetric non-degenerate bilinear map. From the linear
connection we have the curvature

π12D
2ξa = −�ab ⊗ ξb (3.1.26)

where the 2-form�ab is given by

�ab = 4µ

(
xy −x2+ hxy
y2 −yx + hy2

)
ξη. (3.1.27)

The 1-formκ satisfies the equationD2κ = 0.

3.2. The symplectic 2-form

In this subsection, we shall use the expression ‘symplectic 2-form’ and ‘skew-symmetric
metric’ synonymously and denote it by3 since a skew-symmetric metric on theh-deformed
quantum plane resembles a symplectic 2-form as in the ordinary geometry. A symmetric
metric will be denoted simply as a metric as in ordinary geometry.

It has been shown that no metric can exist in the case of theq-deformed quantum
plane [9]. However, theh-deformed quantum plane has a better geometrical structure than
theq-deformed quantum plane and it does have a metric. In fact, theh-deformed quantum
plane has a symplectic 2-form, with which a metric can be associated. The symplectic
2-form of theh-deformed quantum plane is given in a matrix form as

3(ξa ⊗ ξb) ≡ 3ab =
(
h 1
−1 0

)
. (3.2.1)

Now it is straightforward to show that in the particular case when the covariant derivative
is given byDξa = µxaκ ⊗ κ we have

(1⊗3)D(ξa ⊗ ξb) = d3ab = 0 (3.2.2)

and forσ23 = 1⊗ σ
(1⊗3)σ12σ23(ξ ⊗ ξ ⊗ ξ) = hξ
(1⊗3)σ12σ23(ξ ⊗ ξ ⊗ η) = hη
(1⊗3)σ12σ23(ξ ⊗ η ⊗ ξ) = ξ
(1⊗3)σ12σ23(ξ ⊗ η ⊗ η) = η (3.2.3)

(1⊗3)σ12σ23(η ⊗ ξ ⊗ ξ) = −ξ
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(1⊗3)σ12σ23(η ⊗ ξ ⊗ η) = −η
(1⊗3)σ12σ23(η ⊗ η ⊗ ξ) = 0

(1⊗3)σ12σ23(η ⊗ η ⊗ η) = 0.

From these relations, it follows that the symplectic 2-form3 satisfies the compatibility

condition in equation (2.1.14), while the symplectic 2-form3 =
(

0 1
−q 0

)
of the q-

deformed quantum plane does not.
We define theh-deformed symplectic group by

Sph(1) = {T ∈ GLh(2) | T3T t = 3}. (3.2.4)

Equivalently, the symplectic 2-form3 is preserved under the action ofSph(1), i.e.

3(ξ ′a ⊗ ξ ′b) = 3(ξa ⊗ ξb) (3.2.5)

under the transformation(
ξ ′

η′

)
=
(
A B

C D

)(
ξ

η

)
.

From equation (3.1.5) it follows thatSph(1) = SLh(2), which is consistent with the
commutative limit whenh→ 0.

In ordinary symplectic geometry, metrics can be defined by a symplectic 2-form together
with a complex structure and these all together result in a Hermitian inner product. One can
do the same in theh-deformed quantum plane. We can define anA-linear mapJ : �1→ �1

by

Jξ = iξ Jη = −iη (3.2.6)

where i = √−1. The mapJ satisfiesJ 2 = −1 and can be regarded as the complex
structure of theh-deformed quantum plane. Associated with the symplectic 2-form3,
there is a metricg satisfying the following relation, forξ, η ∈ �1,

g(J ξ ⊗ η) = 3(ξ ⊗ η) (3.2.7)

which can be written in matrix form as

g =
(−ih −i
−i 0

)
. (3.2.8)

On the other hand, there is another metricg′ defined by

g′(ξ ⊗ η) = 3(ξ ⊗ Jη) (3.2.9)

which is, in matrix form,

g′ =
(

ih −i
−i 0

)
. (3.2.10)

The two metrics are related by the condition

g(J ξ ⊗ Jη) = g′(ξ ⊗ η) (3.2.11)

for anyξ, η ∈ �1 and agree whenh→ 0. These metrics, however, are not compatible with
the linear connectionD. In fact there is no metric on theh-deformed plane with respect to
whichD is compatible. Such a metric can be found, however, if we extend theh-deformed
quantum plane as in the next section. In order to compare them with the commutative-limit
case let us define

ϑ1 = 1√
2
(ξ + iη) ϑ2 = i√

2
(ξ − iη). (3.2.12)
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Then it is easy to see that

Jϑ1 = ϑ2 Jϑ2 = −ϑ1. (3.2.13)

With respect to{ϑ1, ϑ2}, the two metricsg, g′, and the symplectic 2-form3 can be
expressed as follows

g =
(

1− 1
2ih 1

2h
1
2h 1+ 1

2ih

)
, g′ =

(
1+ 1

2ih − 1
2h

− 1
2h 1− 1

2ih

)
, 3 =

( 1
2h 1+ 1

2ih
−1+ 1

2ih − 1
2h

)
.

(3.2.14)

If we define

H = g′ + i3 (3.2.15)

the mapH goes over to the usual Hermitian inner product on the complex 2-planeC2 in
the commutative limit. Moreover, it is interesting to see that if we letηa = (−η, ξ + hη)
and define the skew derivative∂a by

∂af = 3(ηa ⊗ df ) (3.2.16)

then ∂a satisfy the second equation of (3.1.5) given by Wess and Zumino [27]. Thus the
skew derivatives∂a arise as Hamiltonian vector fields in theh-deformed quantum plane.
This is not the case for theq-deformed quantum plane. In fact, ifxaξb = R̂abcdξ cxd , there
should be elementsηa ∈ �1 such that

ηax
b = R̂bcadxdηc (3.2.17)

for the skew derivatives to be induced from the symplectic 2-form3 as above. However,
there are no suchηa in the case of theq-deformed quantum plane.

4. The extendedh-deformed plane

4.1. Linear connections

The extendedh-deformed quantum plane is an associative algebraA generated by
x, y, x−1, y−1 satisfying equation (3.1.1). The extendedh-deformed plane is also more
interesting than the extendedq-deformed one from the point of view of geometry since the
metric and linear connection it supports have an interesting commutative limit.

If A is a unital ∗-algebra andx and y are Hermitian elements, thenh ∈ iR.
Equation (3.1.1) can be written as [x, y−1] = −h. In this form we see that the algebra
has the structure of the Heisenberg algebra with the parameterh playing the role of ¯h but
the differential calculus (3.1.6) is not ‘natural’ from this point of view. If we introduce

u = xy−1+ 1
2h v = y−2 (4.1.1)

then the commutation relation becomes

[u, v] = −2hv. (4.1.2)

This choice of generators is useful in studying the commutative limit. Ifx and y are
Hermitian, then so areu andv.

We can write (4.1.2) also as [u, (1/2) logv] = −h if we introduce the formal element
logv. We see then that

x ′ = u y ′ = 2

logv
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also satisfy the commutation relations (3.1.1). The algebra cannot then be uniquely
defined by the commutation relations. In fact, von Neumann proved that only by using
additional topological conditions could one deduce the uniqueness of the representation of
the Heisenberg commutation relations.

A (real) frame can be written in terms of the generators in equation (3.1.1) as

θ1 = yξ − (x − hy)η θ2 = 2y−1η (4.1.3)

and in terms of the generators in equation (4.1.2) as

θ1 = v−1 du θ2 = −v−1 dv. (4.1.4)

The original basis(ξ, η) can be written in terms of theθa as

2ξ = 2y−1θ1+ xθ2 2η = yθ2. (4.1.5)

θa satisfy the commutation relations (2.2.5) as well as the relations

(θ1)2 = 0 (θ2)2 = 0 θ1θ2+ θ2θ1 = 0. (4.1.6)

From equation (2.2.6) we see then thatP abcd is given by

P abcd = 1
2(δ

a
c δ
b
d − δbc δad ) (4.1.7)

and, therefore, from equation (2.2.12), we haveCabc = Fabc. In particular,Cabc are real
numbers. The differentials dθa are given by equation (2.2.11) with

C1
12 = −C1

21 = 1 C2
ab = 0. (4.1.8)

If we introduce the derivationsea = adλa with

λ1 = 1

2h
y−2 = 1

2h
v λ2 = 1

2h
xy−1+ 1

4
= 1

2h
u (4.1.9)

we see that equation (2.2.4) is satisfied. We can conclude from equation (2.2.10) thatλa
must form a (real) Lie algebra. We then have from equation (4.1.2)

[λ1, λ2] = λ1. (4.1.10)

The λa form a solvable Lie algebra.
The ‘Dirac operator’ [6] in equation (2.2.9) is given by

θ = − 1

2h
y−1ξ − 1

2h
(x − hy)y−2η = − 1

2h
(du− uv−1 dv). (4.1.11)

A straightforward calculation yields dθ + θ2 = 0.
We introduce a metric and we setg(θa ⊗ θb) = gab. From the bilinearity condition on

g and the relations (3.1.1) we see thatgab must be complex numbers. If we wish the metric
to be real thengab must be real numbers. By a trivial change of basis we can suppose that
gab = δab. We then have in terms of the generatorsx andy

g(ξ ⊗ ξ) = y−2+ x2/4 g(ξ ⊗ η) = xy/4
g(η ⊗ ξ) = yx/4 g(η ⊗ η) = y2/4 (4.1.12)

and in terms of the generatorsu andv

g(du⊗ du) = v2 g(du⊗ dv) = 0

g(dv ⊗ du) = 0 g(dv ⊗ dv) = v2. (4.1.13)

A flat metric-compatible linear connection is given by

Dθa = 0. (4.1.14)
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It has torsion, given by

21 = −θ1θ2 22 = 0. (4.1.15)

For the generic solutionσ in equation (3.1.9), the unique torsion-free, metric-compatible
linear connection is given by

Dθ1 = −θ1⊗ θ2 Dθ2 = θ1⊗ θ1. (4.1.16)

ThisD is also compatible with the symplectic 2-form3 given in equation (3.2.1):D3 = 0.
The curvature map defined by equation (2.2.21) becomes

π12D
2θ1 = θ1θ2⊗ θ2 π12D

2θ2 = −θ1θ2⊗ θ1. (4.1.17)

If one sets as usualRabcd = gaeRebcd then one finds that the Gaussian curvature is given by

R1212= −1. (4.1.18)

The coefficientsRabcd satisfy the usual symmetries of the coefficients of a Riemann curvature
tensor. The coefficients of the Ricci map are given by

Rab = δab . (4.1.19)

We choose nown = 3. Then it is of interest to introduce a third (Hermitian) element

w = − 1
2(u

2− 2hu+ 1+ 2h2)v−1 (4.1.20)

of the algebraA and define

λ3 = 1

2h
w. (4.1.21)

The λi = (λa, λ3) still form a Lie algebra

[λ1, λ2] = λ1 [λ2, λ3] = λ3 [λ3, λ1] = λ2. (4.1.22)

A straightforward calculation yields

e1u = v e1v = 0 e1w = −u
e2u = 0 e2v = −v e2w = w (4.1.23)

e3u = −w e3v = u e3w = 0.

ei satisfy the same commutation relations

[e1, e2] = e1 [e2, e3] = e3 [e3, e1] = e2 (4.1.24)

as λi . They are real in the sense that the derivationeif of an Hermitian elementf is
Hermitian.

The Lie algebra in equation (4.1.24) is a real form ofSL(2,C), different from the Lie
algebra ofSO3. We have found a frame with two generators since the Poincaré half-plane
is a parallelizable manifold and the module of 1-forms is a free (left or right) module. This
is not so in the case of the 2-sphere [18]; the module of 1-forms in this case is a non-trivial
submodule of a free module of rank three. The Lie algebra of Killing vector fields of the
Poincaŕe half-plane and the sphere are different real realizations ofSL(2,C).

A differential calculus can be defined using the three 1-formsθ i dual to the derivations
ei . An analogous situation was discussed in the case of theq-deformed plane [8]. From
equation (4.1.23) we conclude that

du = vθ1− wθ3 dv = −vθ2+ uθ3 (4.1.25)

to which we can add

dw = −uθ1+ wθ2. (4.1.26)
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The second of equations (4.1.25) is a trivial consequence of the commutation relations,
obtained by equating the differential of both sides of equation (4.1.2). The previous
differential calculus with two generators is obtained formally by settingθ3 = 0 in
equation (4.1.25). The commutation relations which define the module structure of�1

are obtained from equation (4.1.25):

u du− du u = −2h du− 4hwθ3 v du− du v = 2huθ3

u dv − dv u = −2h dv + 2huθ3 v dv − dv v = 2hvθ3. (4.1.27)

Apart from the trivial relation which follows from the commutation relations these equations
contain two cubic relations

uv dv − u dv v = v du v − du v2

vu du− v du u+ 2hv du+ 2v dv w − 2 dv vw = 0. (4.1.28)

Provided thath 6= 0 the system equations (4.1.25) and (4.1.26) can be inverted to obtain
equations for theθ i in terms of du, dv and dw:

θ1 = 1

2h
u−1[w, du] θ2 = 1

2h
v−1[u, dv] θ3 = 1

2h
u−1[v, du]. (4.1.29)

This differential calculus has fewer relations than the one defined above. It lies between
that defined by relations (4.1.6) and the universal differential calculus, which has a free
algebra of forms with no relations.

If one defines the Lie derivative of an elementf ∈ A asLXf = Xf thenLX can be
extended to a derivation of the tensor algebra over�1 just as in ordinary geometry. In
particular, if ξ , η are 1-forms andiX is the interior product then the Lie derivativeLXξ of
ξ is given by

LXξ = diXξ + iX dξ (4.1.30)

andLX(ξf ⊗ η) = LX(ξ ⊗ f η) is well defined.
A Killing derivation [18] is a derivationX such that the Lie derivativeLX of the metric

g vanishes:LXg = 0. DenoteLi as the Lie derivative with respect to the derivationei .
Then it is easy to see that

L1θ
1 = −θ2 L1θ

2 = 0

L2θ
1 = +θ1 L2θ

2 = 0

L3θ
1 = −v−1wθ2 L3θ

2 = −v−1uθ2− θ1. (4.1.31)

From these formulae one can calculate the Lie derivative of the metric for the ‘covariant
form’ g = gabθa ⊗ θb:

L1g = −(θ1⊗ θ2+ θ2⊗ θ1)

L2g = 2θ1⊗ θ1

L3g = −(1+ v−1w)(θ1⊗ θ2+ θ2⊗ θ1)− 2v−1uθ2⊗ θ2. (4.1.32)

That is, none of the derivationsei is a Killing derivation.

4.2. The commutative limit of the extended plane

It is interesting to study the structure of the extendedh-deformed quantum plane in the
commutative limit. In terms of the commutative limits̃u, ṽ of the generatorsu, v of the
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algebraA and the corresponding commutative limitθ̃ a of the frame, the metric is given by
the line element

ds2 = (θ̃1)2+ (θ̃2)2 = ṽ−2(dũ2+ dṽ2). (4.2.1)

This is the metric of the Poincaré half-plane. The algebraA with the differential calculus
defined by the relations (4.1.6) can be considered then as a non-commutative deformation
of the Poincaŕe half-plane.

The derivationsei define, in the commutative limit, three vector fields

Xi = lim
h→0

ei . (4.2.2)

If we definew̃ to be the commutative limit ofw then

X1 = ṽ∂ũ X2 = −ṽ∂ṽ X3 = −w̃∂ũ + ũ∂ṽ. (4.2.3)

By construction these vector fields form a Lie algebra with the same commutation relations
as theei . By equation (4.1.32) of the previous section we see that theXi cannot be Killing
vector fields. There is in fact no reason for them to be so. The Poincaré half-plane has,
however, three Killing vector fieldsX′i , given by

X′1 = ∂ũ X′2 = ũ∂ũ + ṽ∂ṽ X′3 = 1
2(ṽ

2− ũ2)∂ũ − ũṽ∂ṽ. (4.2.4)

Define a mapφ of the Poincaŕe half-plane into itself by

φ(ũ) = ũ′ = ũṽ−1 φ(ṽ) = ṽ′ = ṽ−1. (4.2.5)

This is a regular diffeomorphism. Indeed

φ2 = φ ◦ φ = 1. (4.2.6)

In the spirit of non-commutative geometry we considerũ andṽ as generators of the algebra
of functions on the Poincaré half-plane. In ordinary differential geometry a mapφ of the
manifold induces a mapφ∗ of the algebra of differential forms and a mapφ∗ of the vector
fields. Since we shall not have occasion to refer to the manifold as such, we use the notation
φ to designate the restriction ofφ∗ to the algebra of functions. Since we have

φ∗∂ũ = ∂ũ′ = ṽ∂ũ φ∗∂ṽ = ∂ṽ′ = −ũṽ∂ũ − ṽ2∂ṽ (4.2.7)

it is easy to see that

φ∗Xi = X′i . (4.2.8)

The commutative limit of the derivations which defined the differential calculus are then
related to the Killing vector fields in a simple way. We have not succeeded in constructing
derivations of the algebra whose commutative limits are the Killing vector fieldsX′i . The
limit h→ 0 is a rather singular limit and it need not be true that an arbitrary vector field
on the Poincaŕe half-plane is the limit of a derivation. The action ofφ∗ on the frame is
given by

φ∗θ̃1 = ṽ′−1 dũ′ = ṽθ̃1+ ũθ̃2 φ∗θ̃2 = −ṽ′−1 dṽ′ = −θ̃2. (4.2.9)

The vector fieldsXi are Killing with respect to the metric

ds2 = (φ∗θ̃1)2+ (φ∗θ̃2)2. (4.2.10)

The map φ can also be considered as a change of coordinates. In this case
equations (4.2.1) and (4.2.10) describe the same line element in different coordinates
systems. The componentsXai of the vector fieldsXi coincide with the components of the
Killing vector fields in the new coordinate system and the componentsX′ai of the vector fields
X′i coincide with the components of the Killing vector fields in the old coordinate system. We
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have not really understood the role of the mapφ nor why it appears. We have constructed
the algebraA using generators and relations. This is the non-commutative version of
the method of defining a curved manifold as an embedding in a higher-dimensional flat
Euclidean space. It is known [13, 24] that the Poincaré half-plane cannot even be immersed
in R3. This fact might somehow also be connected with the existence of the mapφ.

The commutation relations (4.1.2) define on the Poincaré half-plane a Poisson structure

{ũ, ṽ} = −2ṽ. (4.2.11)

Since the mapφ is not a symplectomorphism it cannot be ‘lifted’ to a morphism of the
algebraA. There should be a relation [19] between the Poisson structure and the Riemann
curvature. It is not evident from the present example, however, what this relation could
be. The Poincaré half-plane has been used as an example of a classical and quantum phase
space and as such has many interesting properties. For a discussion of this and reference
to the previous literature we refer the reader to Emchet al [11]. The relation between the
algebra of a free quantum particle on the Poincaré half-plane and theh-deformed algebra
we have used has yet to be investigated.

5. Conclusion

The h-deformed quantum plane seems to have more geometrical structures than the
q-deformed one. In theh-deformed quantum plane, there is a two-parameter family of
torsion-free linear connections. The existence of a two-parameter family of torsion-free
linear connections is quite general even within the set of two-parameterh-deformed quantum
planes. Moreover, there is a skew-symmetric non-degenerate bilinear map with which
a one-parameter sub-family of linear connections are compatible. The skew-symmetric
map plays an important role. It resembles the symplectic 2-form and makes the linear
connections symplectic. Moreover, it is interesting that the skew-symmetric map induces
skew derivatives in theh-deformed quantum plane. We can also define a complex structure
on theh-deformed quantum plane and construct a metric using this structure together with
the skew-symmetric map as in the ordinary symplectic geometry [3]. However, it should be
stressed that the metric is not compatible with the linear connections. A similar construction
is not possible in the case of theq-deformed quantum plane.

The geometry of the Poincaré half-plane can be completely globally defined by the action
of the SL(2,R) group whose Lie algebra is given by the Killing vectors. From this point
of view a complete classification of all Poisson structures on the Poincaré (Lobachevsky)
half-plane as well as their possible ‘quantum’ deformations has been given by Leitenberger
[12, 17]. We have analysed in detail the extendedh-deformed quantum plane as a non-
commutative version of the Poincaré half-plane; the roles of the derivations and the Stehbein
are explicitly investigated.
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Birkhäuser)

[4] Aghamohammadi A 1993 The two-parametric extension ofh deformation ofGL(2) and the differential
calculus on its quantum planeMod. Phys. Lett.A 8 2607

[5] Chari V and Pressley A 1994A Guide to Quantum Groups(Cambridge: Cambridge University Press)
[6] Connes A 1994Noncommutative Geometry(New York: Academic)
[7] Demidov E E, Manin Yu I, Mukhin E E and Zhdanovich D V 1990 Non-standard quantum deformations of

GL(n) and constant solutions of the Yang–Baxter equationProg. Theor. Phys. (Suppl.)102 203
[8] Dimakis A and Madore J 1996 Differential calculi and linear connectionsJ. Math. Phys.37 4647
[9] Dubois-Violette M, Madore J, Masson T and Mourad J 1995 Linear connections on the quantum planeLett.

Math. Phys.35 351
[10] Dubois-Violette M, Madore J, Masson T and Mourad J 1996 On curvature in noncommutative geometry

J. Math. Phys.37 4089
[11] Emch G G, Narnhofer H, Thirring W and Sewell G L 1994 Anosov actions on non-commutative algebras

J. Math. Phys.35 5582
[12] Faddeev L D, Reshetikhin N Y and Takhtajan L A 1989 Quantization of Lie groups and Lie algebrasAlge.

i Analy. 1 178 (Engl. Transl. 1990Leningrad Math. J.1 193)
[13] Gamkrelidze R V (ed) 1991Geometry I (Encyclopædia of Mathematical Sciences 28)(Berlin: Springer)
[14] Georgelin Y, Masson T and Wallet J-C 1996 Linear connections on the two parameter quantum planeRev.

Math. Phys.8 1055
[15] Khorrami M, Shariati A and Aghamohammadi A 1997SLh(2)-symmetric torsionless connectionsLett. Math.

Phys.40 95
[16] Kupershmit B A 1992 The quantum groupGLh(2) J. Phys. A: Math. Gen.25 L1239
[17] Leitenberger F 1996 Quantum Lobachevsky planesJ. Math. Phys.37 3131
[18] Madore J 1995An Introduction to Noncommutative Differential Geometry and its Physical Applications

(Cambridge: Cambridge University Press)
[19] Madore J 1997 On Poisson structure and curvaturePreprint LPTHE Orsay 97/25, gr-qc/9705083
[20] Madore J and Mourad J 1998 Quantum space-time and classical gravityJ. Math. Phys.39 423
[21] Majid S 1995Foundations of Quantum Group Theory(Cambridge: Cambridge University Press)
[22] Manin Yu I 1998 Quantum groups and Noncommutative Geometry(Montréal: Centre de Recherches
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